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a b s t r a c t

To simulate two-dimensional viscous incompressible flows based on a scheme of blob
splitting and merging, we developed a vortex method and employed a fast multipole
method to speed the computation of velocities. The diffusion of the vortex sheet induced
at a solid wall by the no-slip boundary conditions is first modeled according to the analyt-
ical solution of Koumoutsakos and then converted into discrete blobs in the vicinity of the
wall. To prevent the vorticity from entering the solid body, we introduce a concept residual
circulation in a sense that only a partial circulation of the vortex sheet is diffused into the
flow field; the rest remains at the wall. Blobs near the wall are thus avoided. Blobs near the
wall that might cause large fluctuations in the strength of the vortex sheet are handled
similarly. The solver thus developed requires no grid-based remeshing. We applied this sol-
ver to simulate the flow induced with an impulsively initiated circular cylinder; the results
agree satisfactorily with those of previous experimental and numerical investigations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

According to the discrete vortex method [1] developed as a numerical simulator for two-dimensional incompressible
flows, the convection of packets of vorticity (vortex elements) is tracked. The compactness of the representation of the vor-
ticity field provides this vortex method with advantages over a representation involving primitive variables, beyond its ex-
actly satisfying boundary conditions at infinity for external flows. Viscous effects are included on taking advantage of grid-
based finite-difference methods (such as those described in [2–4]) that make the code no longer grid-free and might result in
excessive interpolation errors. Among grid-free viscous solvers, the random-walk approach that Chorin proposed [5] added
to the element velocity a pseudo-random velocity like Brownian motion. The particle-strength-exchange scheme [6] approx-
imated parts of the governing equations with integral operators and redistributed the strength (circulation) among vortex
elements to account for diffusion. Fishelov [7] proposed to apply the Laplace operator to convolute some truncation function
with a Dirac delta distribution and to adjust the circulations of vortex elements to satisfy the vorticity equation. The resulting
equations for the circulations of vortex elements of the above two methods are in general coupled, causing the methods to
become inefficient. To decouple the circulation equations, the distribution of vortex elements must be highly uniform; these
two methods thus encounter difficulties when the flow becomes highly strained, and many remeshing processes are re-
quired to maintain a uniform distribution of the vortex elements. This requirement increases the computational effort
and prevents schemes from being entirely grid-free. Instead of approximating the Laplace operator with integral operators,
the vortex-redistribution method that Shankar and van Dommelen proposed [8,9] distributes fractions of circulation of each
vortex to its neighboring vortices within a chosen distance; the fractions are computed on equating the Fourier transforms of
. All rights reserved.
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the exactly diffused vorticity and the vorticity resulting after the redistribution. Because a solution of the redistribution
equations does not necessarily exist, new vortices with zero circulation must be added somewhere until a solution is found.
For more details of these vortex methods, a reader is referred to work of Leonard [10], Anderson and Greengard [11], Gus-
tavson and Sethian [12], Beale et al. [13] and Cottet and Koumoutsakos [14].

Our interest is the core-spreading vortex method that Leonard proposed [1]. The fundamental vortex elements chosen
herein are Gaussian blobs. To capture correctly the diffusion phenomenon, the characteristic area of these Gaussian blobs
must increase linearly in time. Its well-known convergence problem is remedied with a blob splitting technique first pro-
posed by Rossi [15] and subsequently improved by Huang [16]. According to the latter treatment, splitting is viewed as
part of the diffusion. Whenever a vortex blob becomes too fat, it discards some circulation, forming progeny vortices in
its surroundings. The strengths and locations of these progeny vortices are determined on preserving the first few mo-
ments of vorticity. To control the total number of vortex blobs, one must merge similar and nearby vortices [17,18].
The simplified merging criteria and the cell technique that Huang [18] developed are useful and efficient. This resurrected
core-spreading vortex method is attractive because it is deterministic, grid-free, and exact for uniform flow fields. As it
does not rely upon operator splitting, it is possible to design methods to constrain the flow to satisfy simultaneously
the boundary conditions of no slipping and no penetration, apart from being readily implemented and computationally
efficient. Among all core-spreading methods employing axially symmetric Gaussians, Huang’s approach [16,18] retains
all these advantages and has superior accuracy [16]. This viscous solver is, however, not highly efficient because the veloc-
ities are evaluated directly according to the Biot–Savart law and are applicable to only flows without boundaries. Here we
apply a fast multipole method to this resurrected core-spreading method, so to extend its capability to simulate flows
with solid walls.

Of fast vortex methods of three kinds, the first maps vorticity values between Eulerian and Lagrangian grids and obtains
the velocities on solving the Poisson equation [19–21]. A second method integrates numerically the Biot–Savart law with
Legendre quadrature and time-changing quadrature nodes and weights [22,23]. A third method groups the influence of near-
by vortices. According to the so-called multipole method that Carrier et al. proposed [24], the velocity induced by a group of
nearby vortex elements is expanded into a finite multipole series. The associated coefficients are calculated, recorded, and
applied whenever the velocity induced on a far-enough vortex element needs computing, according to a group-to-point
method. Carrier et al. proposed also a group-to-group method [24] based on Taylor series; the computational work is further
decreased to be linearly proportional to the total number of vortex elements. In his group-to-point method, Anderson [25]
employed an exact solution of the Poisson equation instead of a multipole series. To match the blob splitting and merging
technique and to keep the scheme grid-free, we combined the multipole method with the resurrected core-spreading vortex
method.

The group-to-point formula thus developed is used to evaluate the influence of a group of nearby vortex elements on only
those vortex elements sufficiently distant; velocities induced among nearby vortex elements are still calculated with the
Biot–Savart law (the point-to-point formula). In deciding which method to apply, a domain decomposition is helpful. Be-
cause the distribution of vortex elements is scattered, adaptive decomposition of the flow domain is appropriate. For in-
stance, Carrier et al. [24] divided a square domain into four equal parts whenever the number of vortex elements
exceeded some limit; cell-to-cell relations in five classes were then identified among these squares. The involved recognition
logic was complicated and thereby inefficient. Van Dommelen and Rundensteiner [26] abandoned the group-to-group tech-
nique, produced cell-to-cell relations in only two classes, and developed a triad numbering system that rapidly identified the
cell-to-cell relations. Draghicescu [27] decomposed a rectangular domain into two equal parts along the longer side. Strain
[23] decomposed a rectangular domain into two parts, but the decomposition was performed based on a principle that the
numbers of vortex elements in the two subdomains are the same or differ by unity. According to both methods, one must
occasionally compute the distance between the rectangular domains when summing the velocities. The outer-ring and in-
ner-ring approximations that Anderson proposed [25] are simple and efficient in summing the velocities, but, as the asso-
ciated radii of rings are undetermined or empirical, estimating the associated numerical error is difficult. For further
information, a reader is referred to [28,29].

In our vortex method, a domain decomposition is required to merge similar and nearby vortex blobs [18]. For consistency,
we decided to apply an adaptive domain decomposition and the group-to-point approximation that Carrier et al. proposed
[24]. An algorithm similar to the outer-ring and inner-ring approximations was developed for the velocity summation. Spe-
cifically, to avoid use of the uncommon 3-based digits [26], we designed a binary numbering system to replace the triad sys-
tem so as to decrease the memory requirement and for even more rapid identification.

When a solid wall is present in the flow, the potential flow theory [30] is applicable to determine the kind and strength of
singularities that can be placed at the wall to satisfy a condition of no penetration. To accommodate the wall effect, Chorin
adopted vortex sheets and the theory of the Prandtl boundary layer [5]; the tangential velocity induced by the vortex blobs
and any external potential flow at the wall was balanced by that induced by the vortex sheet, and the circulation of the vor-
tex sheet gradually diffused into the flow. The total circulation of the flow remained constant according to the Kelvin the-
orem [30]. Anderson et al. [31] employed a similar treatment in their finite-element solver, and Park et al. [19] combined
it with a vortex-in-cell method. Rossi [32] divided the boundary into finite segments, each imposed with a line source to
create the potential flow, and added vortex elements near the boundary segments to approximate a thin boundary layer;
on adjusting the strengths of line sources and newly injected vortex elements, the flow conditions of no-slip and no pene-
tration became satisfied concurrently.
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We chose to place a vortex sheet at the wall and to solve its strength with a boundary-element method and constant pan-
els [33]; we employed Koumoutsakos’ analytical solution [34], properly discretized, to model the diffusion of the vortex
sheet. A fast resurrected core-spreading vortex method applicable for flows with solid boundaries was targeted and tested
with flow typical of an impulsively initiated circular cylinder.

After reviewing Leonard’s original core-spreading vortex method and the blob splitting and merging technique, we pro-
pose a fast method and test its related algorithm. The boundary conditions of no-slip and no penetration are handled in Sec-
tion 4, and the proposed scheme is applied to simulate the flow induced by an impulsively initiated circular cylinder. We
then compare the simulation results with the literature and examine the accuracy of the proposed fast vortex method.

2. Resurrected core-spreading vortex method

The governing equation to be solved is
ox
ot
þ u

ox
ox
þ v ox

oy
¼ mr2x ð1Þ
in which appear vorticity x, velocity~u ¼ ðu;vÞ and viscosity m. The velocity is divided into two parts, one irrotational~up and
another rotational~ux. According to Leonard’s core-spreading method, the solution is decomposed into many discrete Gauss-
ian blobs as follows:
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in which appear location ~xj, core size rj and strength Cj of blob j; they are governed by
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According to the Biot–Savart law, the rotational velocity (~ux) induced by the blobs is,
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The diffusion of Eq. (1) is simulated exactly with Eq. (3a–c) but not convection; the associated error increases with
increasing rj [10]. As remedy, the core size must be kept small. The idea of blob splitting, suggested by Rossi [15], is to re-
place a too fat blob by thinner ones. Huang’s splitting technique [16] that improves the accuracy of Rossi’s is described below.
A threshold rmax for the core size is set first; whenever a blob has a core size rp greater than rmax, this blob is replaced imme-
diately by a thinner one surrounded with M others. The core size of these new blobs is chosen to be arp and their strengths
are determined on preserving the zeroth, second, and fourth moments of vorticity. If Cp, C0p and Cc are the strengths of the
original blob, the thinned blob and the surrounding blobs respectively, the preservation of moments of vorticity produces
C0p ¼ Cp=2 ð5aÞ
Cc ¼ Cp=2M ð5bÞ
r2=r2

p ¼ 2ð1� a2Þ ð5cÞ
in which r is the distance between the original blob and the surrounding blobs. This splitting method differs from Rossi’s
mostly in the survival of the original blob. Leaving a blob of half the strength at the original location diminishes significantly
the error due to splitting, particularly the error at the original location [16]. Physically, when diffusion is concerned, the vor-
ticity at the original location decreases but always remains maximum. Huang’s splitting method approximates this major
part of the vorticity with a blob of half the strength and a circumferential vorticity with the surrounding blobs so that it cap-
tures the diffusion more accurately. Fig. 1(a) shows the maximum field error induced in one single splitting event against the
number (M) of surrounding blobs. The original blob has a circulation Cp = p and rp = 1. As seen, the maximum field error
associated with Rossi’s method does not diminish with increasing M. The error associated with Huang’s method decreases
with increasing M but rapidly becomes saturated. Fig. 1(b) shows the maximum field error at t = 0.9 in simulating a decaying



Fig. 1. Maximum field error associated with a single splitting event against M (a) and that in simulating a decaying Burger’s vortex (rM = 0.4 and M = 6) (b).
Solid circles are the results of Huang’s method and the open squares are the results of Rossi’s.
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Burger’s vortex. The initial flow consists of a single vortex element of core size 0.4 and circulation 5; the fluid viscosity is
m = 0.04. The number of vortex blobs at time t is Mn+1, in which n is the integer part of t=fr2

Mð1� a2Þ=4mg. The error associated
with Huang’s method is clearly about a tenth that associated with Rossi’s for a = 0.9. Based on Fig. 1(a,b) and our experience,
M = 4 and a = 0.85 are suggested [16,18] when efficiency and accuracy are both considered; these choices are employed in all
our simulations presented here.

As the duration of simulation increases, further splitting events occur, and the number of blobs increases rapidly. To con-
tain this situation, similar (with the same sense of rotation) and nearby blobs should become merged into one. If
fðCj;~xj;rjÞjj ¼ 1; � � � ; Sg is the set of similar and nearby blobs, they become replaced with one having ðC0;~x0;r0Þ, such that
C0 ¼
XS

j¼1

Cj ð6aÞ

C0~x0 ¼
XS

j¼1

Cj~xj ð6bÞ

C0r2
0 ¼
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as long as
C0=Cref < pea2r2
max ð7aÞ

r0 < rmax ð7bÞ
with selected error tolerance e and reference circulation Cref. The maximum field error induced in a single merging event is
thus controlled with eCref.

The sets of similar and nearby blobs to be merged are determined as follows. The entire flow domain is divided into equal
square cells of size grmax, and the merging criteria are examined over blobs in each cell; at most one merging event is al-
lowed per cell per time step. The distance between neighboring blobs after merging is thus about

ffiffiffi
2
p

grmax (the diagonal dis-
tance of the cell). Because the minimum core size of a blob is a rmax, the overlapping ratio (the ratio of the core size to the
distance between neighboring blobs) is estimated to be a=ð

ffiffiffi
2
p

gÞ.

3. Fast vortex method

3.1. Method

In applying the multipole method of Carrier et al. [24] to the solver, for blob j that is far from a group of nearby blobs,
namely fðCn;~xn;rnÞjn ¼ 1; � � � ;Wg, we view the latter as a set of point vortices and approximate the induced velocity as
V�j ¼ ux;j � ivx;j ¼
�i
2p

XW
n¼1

Cn

Zj � Zn
ð8Þ
in which appear i ¼
ffiffiffiffiffiffiffi
�1
p

, complex position Z = x + iy and complex velocity V = ux + ivx; superscript * denotes a complex con-
jugate. The multipole method expands the velocity, Eq. (8), about position Z0 within an area occupied by the group of blobs in
a Laurent series to term P as follows
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V�j ¼
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2p
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Errors of two kinds are associated with Eqs. (9a) and (9b): the first arises from an approximation of vortex blobs by point
sources, and the second is due to truncated terms of higher order; the latter is known to be of order WCnj(Zn � Z0)/
(Zj � Z0)jP+1, whereas the former error evidently increases with decreasing jZj � Z0j [35]. Rossi [36] derived and analyzed
the associated Laurent series for elliptical Gaussian vortex blobs on taking into consideration their finite size; this error is
related to the number of terms (P) in the expansion. Rossi suggested a critical value for axially symmetric Gaussian vortex
blobs,
Pcr �
2jZj � Z0j2

r2 þ 1 ð10Þ
which controls the upper bound of the finite-size error. When P > Pcr, this error dominates over the truncation error. A de-
tailed investigation of all factors contributing to the overall accuracy of the approximation associated with the fast multipole
method is found in [37].

The nearby blobs are grouped on taking advantage both of the square cells generated in the previous section for merging
similar and nearby blobs and of the concept of adaptive domain decomposition that Carrier et al. proposed [24]: a minimum
square domain is identified that must cover the entire flow field (all existing vortex blobs and objectives) and that comprises
square cells of size grmax. Four neighboring cells become combined into a larger subdomain and four subdomains become
combined into an even larger subdomain. This procedure terminates only when one subdomain remains, namely the min-
imum square domain specified above. The largest subdomains that contain less than n0 blobs are called childless subdo-
mains. The minimum square domain is labeled as the subdomain of level zero; its four progeny subdomains are called
subdomains of first level, and so forth. The maximum level is that of the finest childless subdomains. Fig. 2 illustrates one
such adaptive domain decomposition; the grids divided by the dotted lines are the cells used to merge similar and nearby
blobs. In total, 64 cells are numbered in a way to be explained later. The squares enclosed with solid lines are adaptive sub-
domains prepared for the group-to-point computation. The maximum level (Lmax) of this domain decomposition is three. The
finest childless subdomains might be as the same as, or larger than, the cells for merging; in the example they are the same.
The childless subdomains might not be the finest.

The neighbors of a subdomain are thus defined as the subdomain itself and those subdomains that are as large as or larger
(possible only if the neighboring subdomain is childless) than the subdomain and are connected with it by one side or a
point. For childless subdomain 50 in Fig. 2 for instance, its parent is a subdomain consisting of cells 48, 49, 50 and 51 (light
grey) and its grandparent is a subdomain comprising cells 48–63. The neighbors of childless subdomain 50 include both light
and deep grey cells. The mutually induced velocities among vortex blobs are computed in the following way. The velocities
induced by blobs within each childless subdomain on blobs in its neighbors are first calculated via the point-to-point for-
mula, namely Eqs. (4a) and (4b). The velocities induced by blobs within each subdomain on blobs belonging to its parent’s
neighbors excluding its own neighbors are computed next by the group-to-point formula, Eqs. (9a) and (9b). Beginning with
subdomains of the maximum level, the group-to-point calculation is continued level by level until the first level is reached,
then terminating the computation of velocities.
Fig. 2. Illustration of the employed adaptive domain decomposition and the binary numbering system.
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As van Dommelen and Rundensteiner suggested [26], the Laurent coefficients of a parent subdomain are computed with
the Laurent coefficients of its four progeny subdomains as follows:
C 0k ¼
X

four children

Xk

n¼1

mk
nCn

� �( )
ð11aÞ

mk
k ¼ 1 ð11bÞ

mk
k�l ¼ mk

k�lþ1 � dZ � k� l
l

for l ¼ 1; . . . ; k� 1 ð11cÞ
in which appear dZ � Z0 � Z00 and the center Z00 and Laurent coefficients C0k of the mother subdomain.

3.2. Numbering system

To identify rapidly the neighbors of a subdomain, we number the finest cells as follows. Of C2 finest cells in total, each cell
has two-dimensional coordinates (x,y) for x, y = 0, 1, . . .,C � 1. A new binary number is obtained on interlacing the binary
digits of x and y; its corresponding decimal number d is exactly the number of the cell. For instance, the cell in the fourth
column and the third row in Fig. 2 has coordinates (x, y) = (3,2) or (011,010). The binary number after interlacing the digits
is (001110), which equals 14. An array L(d) is then built to memorize the level (L) of the childless subdomain that contains
this cell. A subdomain might possess more than one cell, which we recognize by its level L and the smallest number d among
its 4Lmax�L cells. A subdomain that contains cells 48–51 in Fig. 2, for example, is labeled with (d,L) = (48,2). We can hence
identify quickly the neighbors of one subdomain (d,L) based on this particular numbering system as follows.

(i) Obtain the binary expression of d and curtail its last 2Lmax�L digits, yielding a new number d0.
(ii) Separate the odd and even digits of the binary expression of d0, and use them to form two individual numbers dx and

dy; add one to, or subtract one from, either or both dx and dy, thus producing numbers in eight couples.
(iii) Generate eight numbers on interlacing the binary digits of the couples of numbers obtained in the preceding step;

append 2Lmax�L zeros to the right and find the corresponding decimal numbers r.
(iv) Test the levels L0 of the cells labeled with these eight numbers r. If L0 P L, the subdomain labeled with (r,L0) is a neigh-

bor desired; otherwise (r0,L0) is wanted, for which r0 is the number obtained by nullifying the latter 2Lmax�L0 digits of the
binary expression of r.

In subdomain (d, L) = (48,2) in Fig. 2 for instance, because Lmax = 3, the binary expression of d0 is 1100; the binary expression
of dx is thus 10 and of dy is 10, and the eight pairs of numbers are (01,10), (11,10), (10,11), (10,01), (11,11), (01,01), (11,01) and
(01,11). The eight numbers generated in step (iii) are thus 011000(24), 111000(56), 110100(52), 100100(36), 111100(60),
001100(12), 101100(44) and 011100(28). Except the first and the last, the others have levels equal to, or greater than, 2 (L),
and are thus the wanted neighbors of subdomain (48,2). Cells 24 and 28 each have a level one (L0 = 1); their corresponding val-
ues of r0 are the same, namely 010000(16). The last neighbor of subdomain (48,2) is consequently subdomain (16,1).

3.3. Tests

To test the accuracy and efficiency of our proposed fast method, we randomly distributed N Gaussian blobs within a circle
of diameter 10 and adjusted the core size r so that the overlap ratio was 1.5; the average relative error induced with the fast
Fig. 3. Average relative error and the CPU time reduction by the fast method.



Fig. 4. Relative error vs number of terms P used in the Laurent series under a specified ratio SR = r/lmin.
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method and the ratio R of CPU time required by the non-fast (the original) and fast methods are shown in Fig. 3. With
N = 16000 and n0 = 200, the maximum level is 4 (finest subdomain size, lmin, is 0.625), and the core size is about 0.105.
We estimate the value of jZj � Z0j in Eq. (10) to be 1.5 lmin, which is the minimum distance practicable according to the pres-
ent algorithm. The critical number evaluated with Eq. (10) is about 160. For P < 30, the truncation error hence dominates but
decreases exponentially with P, as seen in Fig. 3. Moreover, the more numerous are the blobs, the larger is the reduction ratio
of CPU times. Because the point-to-point computations increase and the group-to-point calculations decrease with an
increasing n0, an optimal choice n0 � 50 seems to exist; this value is larger than in previous investigations [24], likely be-
cause present computers are more powerful in vectoral computations, which speeds significantly the point-to-point calcu-
lations. In Fig. 4, we attempted to control the ratio of the Gaussian core size to the finest subdomain size (SR � r/lmin), and
measured the error associated with the fast algorithm. The Gaussian blobs number 16000 in total and n0 = 50. The error
ceased perceptibly to decrease beyond some value of P. When SR = 0.6, the critical value given by Eq. (10) is 13.5 if
jZj � Z0j = 1.5 lmin is chosen and 6.5 if jZj � Z0j = lmin. With SR = 0.5, the values are 19 and 9, respectively. When these values
are compared with the results in Fig. 4, the optimum number of terms that should be used in the Laurent expansion appears
to be
Popt ¼
2l2min

r2 þ 1 ¼ 2
SR2 þ 1 ð12Þ
The latter relations indicate that Popt� 23 when SR = 0.3, consistent with the measured overall error shown in Fig. 4, which
decays exponentially up to P = 15.

According to another test in Figs. 5 and 6, we simulated the merging of two identical Gaussian vortices, initially having
radius 1 and separated a distance b0 = 5. Each vortex has a circulation C = 1000 and Reynolds number Re = C/2pm � 160. In
Fig. 5. Temporal evolution of the distance between two vortices merging.



Fig. 6. Early temporal evolution of the distance between two vortices merging: (a) viscous (b) inviscid.

Fig. 7. Instantaneous vorticity contours obtained by the non-fast method (dotted lines) and the fast method with n0 = 50 and P = 6 (solid lines) at t/T = 0.4
(left) and 0.8 (right).

M.-J. Huang et al. / Journal of Computational Physics 228 (2009) 1916–1931 1923
total 2160 initial blobs have r = 0.084; other numerical parameters are rmax = 0.25, a = 0.85 and Dt = T/100, with
T ¼ 2p2b2

0=C. Two fast methods, with P = 6 and SR = 0.6 or P = 13 and SR = 0.3, were employed. Fig. 5 shows that the differ-
ences in the temporal evolution of the distance between two vortex centers remain small; in particular, the difference be-
tween the non-fast result and the fast result for P = 13 and SR = 0.3 is negligible. On examination on the early-time behaviors
we find obvious, but small, differences between the non-fast and fast results for P = 6 and SR=0.6, as shown in Fig. 6(a). Be-
cause the error associated with the fast algorithm found in Fig. 3 is small, we conjecture that additional error must arise
when such an algorithm is combined with the splitting/merging algorithm. Basically, a small error in the velocity due to
the fast algorithm produces a slightly different displacement of a vortex blob, which in turn might yield other merging
events. Error might therefore accumulate with time. This conjecture was examined on simulating the same flow field except
with m = 0 so that the splitting/merging algorithm is never evoked. Fig. 6(b) shows that the non-fast and fast results of P = 6
and SR = 0.6 agree satisfactorily. Fig. 7 shows a comparison of the instantaneous vorticity contours of the viscous flows in
which a difference between the non-fast and fast results of P = 6 and SR = 0.6 is scarcely perceptible.

We suggest to determine pertinent numerical parameters as follows. One specifies the desired values of SR and n0,
chooses the optimum value of P determined by Eq. (12), and sets the allowable maximum level for the domain decomposi-
tion as log2(L � SR/rmax), with L as the size of the minimum square that encloses all existing vortex blobs.

4. No-slip boundary conditions

The no-slip boundary condition is fulfilled on placing a vortex sheet of strength c (circulation per unit length) at the wall.
The strength is governed by
cðsÞ � 1
p

I
S

o

on
log j~xðsÞ �~xðs0Þjcðs0Þds0 ¼ �2

owext

on
ð~xðsÞÞ ð13aÞI

S
cðs; tÞdsþ CwakeðtÞ ¼ 0 ð13bÞ
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in which wext is the stream function associated with the external flow, including free streams and vortex blobs, Cwake is the
total circulation inside the flow, and s and n are tangential and normal coordinates along the solid boundary. We discretized
Eq. (13) with the boundary-element method and constant panels (panels of constant strength) [33], and solved with a
requirement of least squared error [38]. To avoid fluctuations, we treated the external vortex blobs as point vortices when
evaluating the right side of Eq. (13a).

4.1. Diffusion of the vortex sheet

To simulate the diffusion of the vortex sheet, we adopted an approximation solution proposed by Koumoutsakos [34]:
xc;iðx; y; t þ DtÞ ¼
XM

i¼1

ci exp � y2

4mDt

� �
2
ffiffiffiffiffiffiffiffiffiffiffi
pmDt
p erf

li
2� xffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

 !
þ erf

li
2þ xffiffiffiffiffiffiffiffiffiffiffi
4mDt
p
 !" #

ð14Þ
in which li is the length of panel i (in total M panels are employed), ci is the constant strength on the panel at time t, (x,y) are
the local tangential and normal coordinates of the panel, and erf is the error function. Eq. (14) assumes a constant vorticity
flux (o xc/oy = �ci/mDt) at the wall during period (t, t + Dt). To discretize this, vorticity distribution and to maintain consis-
tency with the resurrected core-spreading vortex method, we generated new blobs, called wall blobs, at fixed locations out-
side the solid body, as illustrated in Fig. 8; these wall blobs are placed along the central lines normal to the panels. When the
length of each panel is much less than the radius of curvature, adjacent blobs might be viewed as collinear, as shown in
Fig. 8(b). The size h of the squares that must be adapted according to the growth of the viscous sublayer thickness during
one time step is chosen to be

ffiffiffiffiffiffiffiffiffiffiffi
2mDt
p

. We chose the core size of these new blobs to be rc ¼
ffiffiffi
2
p

h.
The strengths of these blobs are then assumed to be the total circulation contributed from the nearby five panels, that is
DCj ¼
X

i

Z Z
h�h

xc;iðxj; yj; t þ DtÞdxdy �
X

i

DCj;i ð15Þ
in which DCj is the strength of the jth new blob, and (xj,yj) are its coordinates relative to the local coordinate system of panel
i. Because we chose for the vortex blobs to employ Gaussian distributions, new blobs nearest the wall are placed distance
r1 = r0 + h/2 from the wall to decrease the amount of vorticity spread into the interior of the body. The circulation within
a distance r0 from the wall hence becomes replaced back to the wall. This circulation is called the residual circulation. This
use of residual circulation might cause a slight delay of diffusion of the vorticity from the wall to the flow but it prevents
blobs from remaining too near the solid body, that might otherwise cause large errors in evaluating c and result in a failure
of the entire vortex method. After a series of tests, we found r0 = 0.3h to be an effective choice. To conserve the total circu-
lation, we modified the strengths of the wall blobs, Eq. (15), on replacing DCj,i with
DC0j;i ¼ DCj;i þ
DC2

j;iP
iDC2

j;i

ljcj 1� erf
r0ffiffiffiffiffiffiffiffiffiffiffi

4mDt
p
� �	 


�
X

i

DCj;i

 !
ð16Þ
in which the second term in the square brackets is the residual circulation.

4.2. Vortex blobs near the wall

Some external vortex blobs might move, because of convection or splitting and merging, toward the wall and remain so
near the wall that their Gaussian tails extend into the interior of the solid body. To avoid this condition, we examined vortex
blobs in the neighborhood of the solid body and judged a blob too near the wall according to the following criterion:
Fig. 8. New blobs generated for a discrete representation of the diffusion of the vortex sheet.
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r
r
<

r1

rc
� r�
in which r is the distance from the wall and r is the core size of the too-near blob. Too-near blobs then become eliminated
and their circulations distributed to newly generated vortex blobs mentioned in Subsection 4.1, the wall blobs. The circula-
tion of one wall blob located at ~xj thus becomes increased by an amount
h2
X

k

Ck

pr2
k

exp �
~xj �~xk

�� ��
r2

k

� �
in which the sum applies to those too-near blobs. Any deficiency in the circulation becomes treated as part of the residual
circulation.

4.3. Time marching

Here we describe a flow chart of the proposed vortex method. Given flow details at time tn, we convect the vortex blobs
with a modified Euler method and make the blob cores grow according to Eq. (3b). The core sizes are then examined, and
splitting and merging are performed if necessary. The strength of the vortex sheet at the solid wall is next solved, and de-
noted c�n. To improve the accuracy, we assumed the constant vorticity flux at the solid wall during (tn, tn + Dt) to be
oxc=oy ¼ �ðcn þ c�nÞ=2mDt. New vortex blobs were then generated to simulate the diffused result of the vortex sheet for time
period Dt. Vortex blobs that are too near the wall were handled at the same time. On calculating the residual circulation
density cn+1, this time step terminated.

5. Impulsively initiated circular cylinder

To test the completed fast resurrected core-spreading vortex method, we chose the flow induced with an impulsively ini-
tiated circular cylinder, paying special attention to the singularity or discontinuity at time t = 0. Because there is no vortex
blob at t = 0, according to the procedures described in Subsection 4.3, the strength of the vortex sheet remains the same, c0,
from t = 0 to t = Dt. Fig. 9 shows the distribution of this initial strength and the distribution c1 at t = Dt = 0.01, which Bar-Lev
and Yang [39] obtained with a perturbation technique. The difference evidently arises from lack of knowledge of the advec-
tion effect during the first time step. To decrease this initial error, we modified the time march of the first time step as fol-
lows. A vortex sheet of strength c0 was first diffused for a period Dt/2; the diffused result was approximated with wall blobs
according to the description in Subsection 4.1. These blobs were then advected with spreading cores for another period Dt/2.
A new vortex sheet of strength c�1 was then calculated and allowed also to diffuse for a period Dt/2. New wall blobs were
again generated to represent this diffused result, and the first time step concluded on calculating the residual circulation
density c1. The flow proceeded according to the procedures given in Subsection 4.3.

5.1. Re = 550

We first tried to simulate the flow with a Reynolds number Re = UD/m = 550, in which U is the free stream velocity and D is
the diameter of the cylinder. The numerical parameters used in the splitting/merging algorithm are rmax ¼

ffiffiffi
6
p

h, a = 0.85,
Cref = UD, e = 1, g = 0.5, and Dt = 0.01D/U. The overlap among blobs was thus controlled to be about 1.2. Those parameters
ig. 9. Distributions of the strength of the vortex sheet induced on the impulsively initiated circular cylinder at t = 0 (a) and t = Dt = 0.01 (b).
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associated with the fast method are P = 13 and n0 = 100. Both the panel length and h were chosen to be
ffiffiffiffiffiffiffiffiffiffiffi
2mDt
p

. In total 522
panels ð� pD=

ffiffiffiffiffiffiffiffiffiffiffi
2mDt
p

Þwere employed to approximate the circular boundary; the ratio of the panel length to the radius of the
cylinder is of order 10�2, rc ¼

ffiffiffi
2
p

h and r0 = 0.3h.
Shown in Fig. 10 are the vorticity contour plots at tU/D = 1, 3 and 5. The magnitudes of the contours were chosen to be as

the same as those in Fig. 12 of Ploumhans and Winckelmans (PW) [40], who modified the particle-strength-exchange (PSE)
method near solid boundaries to avoid a spurious vorticity flux during the convection step. A comparison finds the obtained
vorticity structures to be nearly identical. In Fig. 11, we compare the simulated results with experimental measurements
[41]. The calculated velocity distributions along the x-axis agree satisfactorily with the measurements. We computed the
linear impulse (I) and the drag coefficient (CD) as follows:
I ¼
XN

i¼1

yiCi þ
XM

m¼1

yc;mcmlm ð17aÞ

CD ¼
Iðt � DtÞ � Iðt þ DtÞ

U2DDt
ð17bÞ
in which N is the total number of vortex blobs in the flow and M is the number of panels used. The results shown in Fig. 12
are compared with those of Ploumhans and Winckelmans [40], Koumoutsakos and Leonard [42], and the analytic solution
derived by Bar-Lev and Yang [39]. Koumoutsakos and Leonard (KL) [42] replaced the differential operators in Eq. (1) with
integral operators that were in turn discretized with quadrature having as quadrature points the locations of the blobs. Like
the PSE methods, remeshing was necessary to solve the problem of Lagrangian grid distortion. The present results agree bet-
Fig. 10. Vorticity contours (increment DDx/U = 2) at tU/D = 1, 3 and 5 for Re = 550.



Fig. 11. Velocity distributions along the x-axis at several times. Symbols denote experimental measurements [41]. N, tU/D = 0.5; h, tU/D = 1.0; j, tU/D = 1.5;
M, tU/D = 2.0; �, tU/D = 2.5; }, tU/D = 3.0.

Fig. 12. Linear impulse and drag coefficient of our simulation results compared with those obtained by Ploumhans and Winckelmans [40], Koumoutsakos
and Leonard [42] (dotted line), and the analytic solution with a perturbation by Bar-Lev and Yang [39].
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ter with the results of Ploumhans and Winckelmans [40] before tU/D � 2.5 (the drag coefficient of Koumoutsakos and Leon-
ard [42] is smaller). The present result agrees with the analytic solution even better at the smallest times, attributed to a



Fig. 13. Instantaneous locations of vortex blobs of counter-clockwise rotation (a) and those of clockwise rotation (b) at tU/D = 5 when only blobs of the
same sense of rotation are allowed to merge.

1928 M.-J. Huang et al. / Journal of Computational Physics 228 (2009) 1916–1931
special treatment in the first time step. With increasing time, our drag coefficient becomes slightly smaller than that of Plo-
umhans and Winckelmans [40], matching that of Koumoutsakos and Leonard [42] instead.

Ploumhans and Winckelmans [40] used �5000 to 70000 computational elements and 592 panels. We performed our sim-
ulation on a computer (Intel�CoreTM2 6600@2.4 GHz) in 3.27 h, with 522 panels and vortex blobs numbering 100000 in total
at the final time. Fig. 13 shows the instantaneous distribution of these vortex blobs at the final time step, clearly showing the
advantage of compactness associated with the vortex method. Because only vortex blobs of a same sense of rotation are al-
lowed to be merged, there generally exist two blobs within each cell after the merging, one counter-clockwise and the other
clockwise. Vortex blobs of opposite senses of rotation can also be merged as long as the associated error is less than the pre-
scribed tolerance [16]. In such a simulation that we performed also, the results were only slightly worse (not shown here),
Fig. 14. Instantaneous locations of vortex blobs of counter-clockwise rotation (a) and those of clockwise rotation (b) at tU/D = 5 when blobs of opposite
senses of rotation are also allowed to merge.



but the total number of vortex blobs decreased to about 62000 at tU/D = 5. The instantaneous locations of these vortex blobs
are shown in Fig. 14.

5.2. Re = 3000

We attempted also to simulate a flow having a Reynolds number as large as 3000. To ensure sufficient resolution, we
chose Dt = 0.005 and modified the related numerical parameters accordingly. Numerical parameters unrelated to Dt re-
mained unaltered, except the error tolerance for merging. We selected a value e = 10 to have an acceptable extent of com-
putation. The vorticity contours at tU/D = 1, 2, and 3 are illustrated in Fig. 15 and the computed drag coefficient is shown in
Fig. 16. Compared to the results of Ploumhans and Winckelmans [40], our primary vortex is more axially symmetric, likely
because of the large error tolerance (i.e. too many merging events allowed), which enhances the diffusion effect. Even so, the
second vortices attached to the cylinder agree satisfactorily with theirs [40], whereas the computed drag coefficients coin-
cide at early times but deviate after tU/D � 1. This derivation is irreducible on decreasing rmax and Dt or varying the numer-
ical parameters related to residual circulation. We thus conjecture that the enhanced diffusion effect from the merging errors
is responsible; a smaller e yields more surviving vortex blobs and thus a great computational amount.

Compared with 1944 panels and 500000 particles at tU/D = 5 used by Ploumhans and Winckelmans [40] and with 300000
particles at tU/D = 3 used by Koumoutsakos and Leonard [42], we employed 1722 panels and 210000 vortex blobs in total at
the final time (tU/D = 3) as shown in Fig. 17, requiring 17.3 h on the same computer.
 

 



Fig. 16. Drag coefficient obtained with our vortex method (thick solid line), compared to results of Ploumhans and Winckelmans [40] (dashed line), of
Koumoutsakos and Leonard [42] (dotted line), and of Shiels et al. (thin solid line), and the spectral-method result of Henderson [28] (dashed-dotted line).

Fig. 17. Number of computational elements vs time for an impulsively initiated cylinder at Re = 3000 compared with Re = 550.
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6. Conclusion

A vortex method suitable for simulating two-dimensional viscous incompressible flows is here proposed such that the vor-
ticity field is composed of Gaussian vortex blobs of which the core areas grow linearly with time. To control the convection
error and the computational effort, we applied blob splitting and merging, and a multipole method to speed the computation
of velocities assisted by a carefully designed system of binary numbering. The boundary condition of no-slip is satisfied on
placing a vortex sheet at the wall and having it diffuse properly into the flow. To prevent the vorticity from entering the body,
we introduced a concept residual circulation such that circulation that remains too near the wall is put back to the wall.

The solver so developed that requires no grid-based remeshing has been applied to simulate the flow induced with an
impulsively initiated circular cylinder. The results agree satisfactorily with previous experimental and numerical data for
Re = 550 in both accuracy and efficiency. When the Reynolds number is increased to 3000, the early behaviors of the flow
(tU/D 6 1) are captured also satisfactorily, but the long-time behaviors deviate from those in preceding numerical investiga-
tions; this deviation is attributed to the error arising from merging that is not readily improvable because adjustable param-
eters are limited. A non-uniform spatial resolution, in both core size and error tolerance associated with the merging, is
expected to be helpful and is currently under development.
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